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Summary. We have initiated a comparat ive study of several families of structurally 
closely related large benzenoid hydrocarbons of increasing number  of fused ben- 
zene rings. Local and global properties of such molecules have been studied with 
a particular interest in investigating the closeness of finite-size molecules for 
modelling infinite polymeric structures having the same structural patterns. We 
focus in this report  on two questions: (1) how large is a finite molecule which well 
approximates an infinite system? and (2) how do terminal groups influence local 
properties in the central part  of the molecule as we approach the infinite system. 
Emphasis in this report  is on extraction of high-accuracy limiting values for 
selected molecular properties from limited data on a few smaller members of 
structurally related molecules. 
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1 Introduction 

Polymers are idealized as infinite systems with a regularly repeating structural unit. 
Much very useful information on polymers has been derived from a close study of 
the unit cell employing various theoretical models. However, strictly speaking 
infinite systems do not exist; they are an idealization. The question can then be 
posed: How large should a finite molecular system be such that, for practical 
purposes, the system behaves as an infinite system? This is the question addressed 
in this study. 

In the literature there are numerous reports in which infinite benzenoid poly- 
mers of finite width were compared with the limiting structure of graphite [1]. 
Although such studies have been of considerable interest they do not answer the 
above question which pertains to finite molecules. It  has been stated [2] that in 
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order to approach the properties of graphite realistically, one would have to 
consider molecular systems having l0 s carbon atoms. However, with judicious 
lesser computation we might be able to estimate or guess answers. 

In this paper we consider large but finite molecules having a "repeating" unit 
which if extended to ever larger size would asymptotically approach a polymer. We 
outline a general scheme which is concerned with a comparison of results for finite 
molecules with similar calculations for infinite systems. This will be illustrated for 
one particular property, that of the molecular stability as reflected in the con- 
jugated-circuit resonance energy per electron (REPE). The numerical parameteriz- 
ation adopted is from SCF MO-type calculations. In cases where each site 
corresponds to a single carbon atom each contributing a single pi-electron to the 
overall molecular network the REPE is the same as the resonance energy per 
carbon atom (or per site). 

Recently [3], we have examined in some detail a particular family of large 
benzenoids in order to see how the finite-size influence selects molecular para- 
meters. The molecules considered belong to the triphenylene-tetrabenzanthracene 
family of Fig. 1. Each successive member is obtained by fusion of a phenanthrene 
unit at the benzene ring of an end group. Molecules involving up to n = 6 
"repeating" units were examined and convergence of local molecular properties 
was observed. 

Here we present more ambitious calculations on several similar finite ben- 
zenoid structures of increasing size. In particular, we consider structures having 
a single "repeating" unit but different end groups (Fig. 2). In this way we hope to 
obtain more insight as to the role of end groups on the properties of large systems. 
It is already known [4] that the asymptotic rates of convergence for long polymers 
having the same repeating unit but different end groups are generally (i.e., for those 
associated with the same long-range spin-pairing order) the same. The rate of 
convergence depends only on the eigenvalue properties of the corresponding 
transfer matrix. For  example, the leading "correction" term governing the 

Fig. 1. The smaller members of the 
tetrabenzanthracene family 
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Family I 

Family II 

Fig. 2. The families considered 
which differ only in their end 
groups but have the same 
repeating monomer unit 

convergence for the Kekule structure count is the length power of the ratio of the 
second largest magnitude to the maximum eigenvalue of the transfer matrix. Since 
polymers with the same repeating unit generally have the same transfer matrix 
there should be no difference in this aspect of the convergence behavior. One 
expects that the sort of behavior will generally occur when sequences of finite 
molecules model infinite systems. The transfer matrix approach applies best to 
regular systems, either infinite, or finite with a single repeated monomer unit. With 
cyclic boundary conditions the ends are "eliminated". The latter are illustrated by 
more symmetric fullerenes including buckminster fullerene [,5], and there are also 
numerous statistical mechanical applications [-6] of the technique. But more 
generally not even regularity is required [7]. 

2 Conjugated circuit model 

Before we proceed we have to outline briefly the conjugated circuits approach to 
calculate the molecular resonance stability. Although the model is based on 
examination of the set of Kekule valence structures it is intimately related to some 
valence-bond-type calculations of molecular electronic properties. Within each 
Kekule valence structure one enumerates conjugated circuits, and usually restricts 
the enumeration only to smaller conjugated circuits, since only such make a signifi- 
cant contribution to the molecular stability. Efficient algorithms for enumeration 
of conjugated circuits are based on the transfer matrix approach [,4], involving 
examination of relevant substructures derived by erasure of even cycles of various 
sizes [,8], or they are based on the so-called "many-body" scheme [9]. In this report 
we use the latter approach, which has been implemented for computer use. 

After one enumerates conjugated circuits of different sizes, one can write down 
the expression for the molecular resonance energy (RE) which is given in terms of 
the contributions of conjugated circuits of different sizes averaged over the Kekul6 
valence structures [,10-12]. One can even restrict attention to individual rings and 
only consider conjugated circuits involving a selected ring. In this way one obtains 
local aromaticity characteristics for distinct individual benzene rings in a molecule 
[-13]. To obtain numerical values, one can select a parameterization which gives the 
RE based on SCF MO resonance energies [14]. 

Since the smaller conjugated circuits make the major contributions to the 
molecular RE, we decided to count only conjugated circuits of size six (benzene 
fragments) and size ten (naphthalene periphery). We should reiterate that the model 
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of conjugated circuits is equivalent to the resonance theory model of Herndon [15], 
although the two schemes are motivated in different ways. Herndon's  model can be 
viewed as an extension of the early work of Simpson [16]. The conjugated circuit 
model follows VB theory and can be viewed as an extension of the early work of 
Pauling and others involving "islands" [17]. Finally, we should mention that both 
approaches, the conjugated circuits theory [10, 11] and Herndon's  resonance 
theory [15], can be derived within the standard quantum chemical framework 
[18, 19]. 

3 Tetrabenzanthracene family 

In Fig. 1 we have shown several smaller members of a family of fully benzenoid 
systems which are derived by augmenting the parent structure tetrabenzanthracene 
with a triphenylene unit at the end of a molecule. In Fig. 2 are illustrated larger 
members of the family of tetrabenzanthracene and closely related molecules which 
differ only in their ending (or initial) groups. Both molecules not only have the same 
"repeating" unit, but also both represent examples of Clar's fully benzenoid 
hydrocarbons [20]. These are hydrocarbons for which one can write, but a single, 
Clar structure in which all benzene rings are either assigned to a pi-sextet or are 
"empty" (i.e., seemingly devoid of innate contribution to the overall aromatic 
properties of the system). We will focus in this report on two questions: 

(1) How large is a finite molecule which well approximates an infinite system? 
(2) How do terminal groups influence local properties in the central part  of the 

molecule as we approach the infinite system? 

In order to obtain insight into the convergence of the results for finite molecules 
to the properties of an infinite system, we have collected in Tables 1 and 2 the 
REPE values for the smaller members of the first family of tetrabenzanthracene- 
based polymers. We consider the first 12 members of each family, i.e., molecules 
from two dozen carbon atoms up to molecules containing over 200 carbon atoms 
and having over 30 fused benzene rings. 

Table 1 

N n # R 1/nK # R2/nK REPE (eV) 

1 30 0.1600000 0.04000000 0.14888 
2 48 0.1586700 0.04797980 0.14969 
3 66 0.1580705 0.05157700 0.15005 
4 84 0.1577280 0.05363217 0.15026 
5 102 0.1575063 0.05496199 0.15039 
6 120 0.1573512 0.05589286 0.15049 
7 138 0.1572365 0.05658090 0.15056 
8 156 0.1571483 0.05711016 0.15061 
9 174 0.1570783 0.05752991 0.15065 

10 192 0,1570215 0.05787097 0.15069 
11 210 0.1569744 0.05815355 0.15072 
12 228 0.1569347 0.05839152 0.15074 

Limit oe 0.1564720 0.06116781 0.15102 



Comparative study of large molecules 

Table 2 

N n # R 1 InK # R2 InK REPE 

1 24 0.1583333 0.05000000 0.14989 
2 42 0.1575277 0.05483406 0.15038 
3 60 0.1572109 0.05673469 0.15057 
4 78 0.1570404 0.05775773 0.15068 
5 96 0.1569338 0.05839712 0.15074 
6 114 0.1568609 0.05883459 0.15079 
7 132 0.1568079 0.05915276 0.15082 
8 150 0.1567676 0,05939406 0.15084 
9 168 0.1567359 0.05958455 0.15086 

10 186 0.1567104 0.05973777 0.15088 
11 204 0.1566893 0.05986395 0.15089 
12 222 0.1566717 0.05996967 0.15090 

Limit oe 0.1564720 0.06116781 0.15102 

We see from Tables 1 and 2 that the convergence of the R1 and R2 coefficients, 
which indicate contributions of six-membered and ten-membered conjugated cir- 
cuits to REPE, varies quite slowly as we consider larger systems. The coefficients of 
RI and R2 shown in Tables 1 and 2 were obtained using a computer program 
prepared in this laboratory [21]. The entries in the two tables are the ratios 
# R I / n K  and # R2/nK where K is the number of the Kekule valence structures in 
the molecule, and n is the number of carbon atoms. # R I and # R2 are the counts 
of six- and ten-membered conjugated circuits in a molecule, respectively. 

That finite molecules show a slow convergence as they approach an infinite 
system representing a polymer has been generally known. Tables 1 and 2 should 
display convergence to the same limit, because they both have the same "repeating" 
unit. However, it may sometimes be difficult to estimate the limit by viewing the 
behavior of finite molecules even if they appear large. When we approach molec- 
ules having some 200 carbon atoms the molecules show but a small increase in 
REPE. The changes in the coefficients evidently affect only the fifth decimal place. 
But, as the sequence 1/N well illustrates, small changes need not ensure conver- 
gence, and even if an upper bound exists we may be far from the limit for even 
moderate values of N. 

To illustrate the very slow convergence we have evaluated exact values, using 
the analytical approach to molecular RE [22], for # R ~ / n K  for several large 
N which are shown below: 

N #R1/nK 

200 0.1565012 
300 0.1564915 
500 0.1564837 

1000 0.1564779 
1500 0.1564759 
2000 0.1564748 
2500 0.1564744 
3000 0.1564740 

The analytical approach allows one to continue the calculation for even larger 
N values. The slow convergence is illustrated by recording the N values for which 
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each successive digit in the limit 0.1564720 appears, as is illustrated below: 

Digit N 

2 2 
3 11 
4 251 
5 1001 
6 6101 

Having the results for very large N, one can extrapolate and find limits to high 
accuracy. Our prime purpose, however, here is to outline how one can obtain an 
accurate limit when calculations are not available for very large N, as often will be 
the case. 

4 Expansion of REPE in reciprocal power series 1/N k 

In Table 3, instead of listing RI and R 2 coefficients we computed their ratio. Since 
the R1 coefficient decreases and the R2 coefficient increases with N, the ratio is 
a more sensitive function of N than either considered separately. Thus, while in 
Tables 1 and 2 already when N = 12 the difference in the coefficients for R, is 
about 0.000018, the ratio # R 1 / #  R2 shows a much greater difference, i.e. 0.012. 
Even when we know the limit (as in the last row in Tables 1 and 2), inspection of the 
entries in these tables may give but a misleading impression that one is not too far 
from reaching the limit. In this respect, Table 3 better reflects the reality, that we 
have a long way to go in order to approach the limit, i.e., to reduce the ratio 
#RI/#R2 from about 2.60 down to 2.56. 

Table 3 

N Family I Family II 

1 4.00000000 3.16666667 
2 3.30707543 2.87280702 
3 3.06476820 2.77098321 
4 2.94092074 2.71895021 
5 2.86573197 2.68735558 
6 2.81522864 2.66613387 
7 2.77896814 2.65089706 
8 2.75166998 2.63942626 
9 2.73037686 2.63047881 

i0 2.71330363 2.62330457 
11 2.69930897 2.61742395 
12 2.68762904 2.61251600 
13 2.67773343 2,60835782 
14 2.66924228 2.60478981 
15 2.66187640 2,60169463 
16 2.65542600 2.59898415 
17 2.64973042 2.59659083 
oe 2.55807821 2.55807752 
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4.1 Expansion 

In order to get a more reliable estimate to the limit of REPE for an infinite system 
we will examine the regression of our coefficients for R1 against powers of 1IN. 
Since both families of finite molecules of Tables 1 and 2 are indistinct in the N ~ 
limit, we will focus attention on Table 2, in which the initial values for N are smaller 
than for the corresponding N in Table 1. We will expand the coefficients in the R1 
column in a power series in ( l /N) k and then extrapolate the expansion for larger 
values of the number N of"repeating" units of fused triphenylenes. In particular, we 
will consider N = 100, N = 1000, N = 10000 as finite molecules which may suffice 
to approximate infinite systems sufficiently well. 

First we have to select the degree of the polynomial for the fit. In Fig. 3 we give 
the residuals of the plot for a linear, a quadratic, a cubic, a quartic and a quintic 
polynomial. By comparison of these different results of the figures, one can 
immediately see that there is little improvement in going beyond a quadratic 
correction. In the case of quadratic regression the residuals might be interpreted to 
reflect a cubic dependence on 1IN. Similarly, regular patterns might also be seen 
for residuals of cubic and quartic regressions and only when we reach a quintic 
regression does the residual start to appear as noise rather than reflecting a pattern 
of a higher polynomial. 

In Table 4 we give the information for the coefficients of the multiple regression 
equations based on quadratic and higher polynomials for the entries of Table 
2 under the column # RI/nK. In the last column we show the Fisher F ratio which 
suggests the quality of the regressions. We see an enormous increase in F when 
going from the linear regression to the quadratic, and even larger increase in 
F when introducing the cubic term. After the cubic term there is no increase in F; 
this suggests that our best equation is 

R~ = 0.15647218 + 0.00245947(1/N) - 0.00079578(1/N z) + 0.00019747(1/N3). 

By using the above cubic equation we derive the extrapolated values for 
# R~/nK as shown in Table 5. N is the number of "repeating" units and n gives the 
approximate number of carbon atoms in the corresponding finite systems. All the 
values for R1 are given in units ofR~ = 1. Since R~ is usually listed in eV units to 
three digits we see that already a finite molecular model having 103 carbon atoms 
will give a very adequate approximation for the resonance stability of the infinite 
polymer system which the finite system approaches. 

By considering molecules having large numbers of carbon atoms we can 
increase the accuracy of the model should other conditions warrant such expan- 
sions. The limiting value is given by the constant term of the cubic expansion, 
which quite well approaches the exact limit base on an "infinite" polymer model. 

4.2 Limit 

We obtain the exact limiting value for R1 (and R2) for the infinite system having the 
same "repeating" unit by using another program in which, with employment of 
translational symmetry, a numerical single integration is performed. For molecules 
considered here cyclic conditions on polymers of much smaller length already give 
the limiting value for Rx. In Table 6 we give the output of the count and the 
conjugated circuits R1 and Rz for the infinite (cyclic periodic) strip. The count of 
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Fig. 3. The residuals of quadratic, cubic 
quartic and quintic fitting of the data in 
terms of the polynomials in 1IN 

conjugated circuits is normalized by dividing the count by the corresponding 
number of Kekule valence structures for the repeating "cell". 

In order  to extract the correct contributions to R1 and R2 we have to identify 
rings which belong to the periodic cell. We illustrate in Fig. 4 the contributing rings 
for R1 and R2, respectively. In Table 6 the 10-cycle contributing conjugated circuits 
have been indicated by a " + " sign. In our case all ten-membered conjugated 
circuits either make an equal contribution of 0.0917511 (which in Clar's terminol- 
ogy equals the contribution of 6-membered "empty" rings), or make no contribu- 
tion. Hence, some of Clar's "empty" rings are not really "empty" (i.e., are not 
actually devoid of contribution to the molecular resonance stability), but are 
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Table 4 

m = 2 m = 3 m = 4 m = 5 

constant 0.15647919 0,15647218 0.15647212 0.15647203 

1/N 0.00236172 0.00245947 0.00246061 0.00246293 
1IN z - 0.00050845 - 0.00079578 - 0.00080208 - 0.00082201 
1IN 3 0.00019747 0.00020941 0.00028027 
1IN '~ - 0.00000673 - 0.00011183 
1IN 5 0.00005195 
F 3.1 × 103 2.8 x l0 s 2.1 x 108 1.9 x 10 s 

Orthogonal expansion 

Constant 0.15653557 F 

1IN 0.00185594 2.5 x 103 
1IN 2 - 0.00050845 3.1 x 105 
1IN 3 0.00019635 2.8 x 108 
1/N 4 0.00001415 2.1 x 108 
1/N 5 0.00026478 1.9 x 108 

Correlation matrix 

R1 ~'~1 02 03 ~'~4 05 

R1 1 0.997 -- 0.074 0.005 0.000 0.000 
O1 1 0 0 0 0 

02 1 0 0 0 
03 1 0 0 
04 I 0 
05 1 

Table 5 

N = 10 Ra = 0.15671215 
N = 100 R1 = 0.15649670 
N = 1000 R1 = 0.15647464 
N = 10000 R1 = 0.15647233 

Limit 
N ~ oo R1 = 0.15647218 
Exact 
N ~ oo R1 = 0.15647203 

n ~ 1.8 x 10 ~ 
n ~ 1.8 x 10 3 
n ~ 1.8 x 10 4 
n ~ 1.8 × 10 5 

" a l m o s t  e m p t y " .  T h i s  h a s  b e e n  o b s e r v e d  e a r l i e r  [ 1 0 - 1 2 ] .  T h e  c o u n t  o f  K e k u l e  

v a l e n c e  s t r u c t u r e s  f o r  t r i p h e n y l e n e ,  w h i c h  is t h e  r e p e a t i n g  u n i t  i n  o u r  m o l e c u l e s ,  is 

9; h e n c e ,  t h e  f ina l  r e s u l t  is o b t a i n e d  b y  s u m m i n g  t h e  r i n g  c o n t r i b u t i o n s  a n d  

d i v i d i n g  t h e  s u m  b y  9. T h u s ,  w e  o b t a i n  as  t h e  l i m i t i n g  c o n t r i b u t i o n  o f  6 - m e m b e r e d  

r i n g s  1 . 4 0 8 2 4 8 2 8 8 / 9  = 0 . 1 5 6 4 7 2 0 3 2 .  
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Fig. 4. Number ing  of carbon atoms for Table 6; all distinct rings contributing to six membered 
conjugated circuits (middle) and all pairs of adjacent rings contributing to ten-membered conjugated 
circuits 

Table 6. Contr ibutions of all 6-cycle conjugated circuits 

Carbon a toms R1 contribution 

1 2 3 4 5 18 C 0.40824829 
1 18 17 16 45 44 B 0.09175171 
5 6 11 12 17 18 D 0.09175171 
6 7 8 9 10 11 E 0.40824829 
8 9 34 35 36 19 A 0.09175171 

12 13 14 15 16 17 C' 0.40824829 

Contribution of all 10-cycleconjugatedcircui tsContr ibut ionsof t r iphenylene"cel l"areindicatedby + 

Carbon a toms R2 contributions 

1 2 3 4 5 6 11 12 17 18 + 0.09175171 
1 2 3 4 5 18 17 16 45 44 + 0.09175171 
1 18 5 6 11 12 17 16 45 44 + 0 
1 18 17 12 13 14 15 16 45 44 + 0.09175171 
1 18 17 16 45 46 47 42 43 44 0.09175171 
5 6 7 8 9 10 11 12 17 18 + 0.09175171 
5 6 11 12 13 14 15 16 17 18 + 0.09175171 
6 7 8 19 36 35 34 9 10 11 + 0.09175171 
8 9 34 33 32 31 30 35 36 19 0.09175171 
8 9 34 35 30 29 24 23 36 19 0 
8 9 34 35 36 23 22 21 20 19 0.09175171 
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4.3 Very accurate estimate o f  the limit 

We have already seen that the extrapolation gave a very good value for the limiting 
contributions R1 and Rz .  The question is whether the "approximate" limit was 
fortuitously so good? In this section we want to study this question and will try, on 
the one hand, to obtain some insights into factors that can "spoil" the accuracy 
and, on the other hand, will consider alternative routes to the limit. The importance 
of such study is for the cases of limiting processes for which no cyclic boundary 
conditions apply that would facilitate "exact" calculations. In this class would 
belong the so-called "fractal benzenoids" [23], and closely related dendritic sys- 
tems which form patterns of self-similar substructure. While only a few of the 
smaller members of such molecules may exist or are likely to be prepared, the 
model of fractal and dendritic benzenoids is of interest for a better understanding of 
important  amorphous systems, which locally and globally may have, statistically 
speaking, self-similar structure. 

Yet another recent interesting use of dendritic systems built from smaller 
benzenoids is concerned with the reversal of the traditional approximation of an 
infinite planar system (e.g., graphite) simulated by smaller systems having cyclic 
boundary conditions. In the reversed problem the opposite is considered: approxi- 
mating finite systems having cyclic boundary conditions by infinite systems. An 
application of such is in the domain of fullerenes and other caged carbon structures 
where by representing such by dendritic structures of ever increased size one can 
obtain some insight of the roles and contributions of the 12 "pentagons" in those 
systems, which are absent in the associated dendritic benzenoids [24]. 

In Table 7 we listed several schemes of establishing or approximating the 
limiting contributions of R1 to the unit cell resonance energy. There are three 
distinct models considered. 

(1) Expansion in a geometric series. 
(2) Polynomial optimal curve fitting. 
(3) Orthogonal optimal curve fitting. 

The first approach which we have labeled as "perturbation method", is sugges- 
ted from a knowledge of properties of transfer matrix for deriving the Kekule 
structure count (K) and the count of conjugated circuits ['4]. For  any finite 
molecule which is a member of a family that is based on a repeating monomer unit, 

Table 7. The limiting values for R1 contribution 

Method Limit 

A + BIN + C,u N + Dp~'/N 0.15649542 
Quadratic fit 0.15647919 
Residuals quadratic 0.15647919 
Slopes (tangent at the "end") 0.15647531 
Slopes (limits of tangents) 0.15647236 
Cubic fit 0.15647218 
Residuals cubic 0.15647222 
Quartic fit 0.15647212 
Residual quartic 0.15647235 
Quintic fit 0.15647203 
Residual quintic 0.15647189 
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one can obtain K from an expression like 

KN = A2~ + B2z N, (1) 

where the constants A and B depend on the form of the "end" groups, while 21 and 
22 are the latent roots of the transfer matrix depending only on the monomer unit. 
Index N indicates the number of the repeating units in a finite molecule MN. In 
general, there are further eigenvalues and further terms for each eigenvalue added 
into the equations for KN, but for "doubly connected" polymers (i.e., those not 
wider than one ring at some point in the unit cell) there are but two relevant 
eigenvalues. 

The contributions of 6-cycle conjugated circuits may heuristically be identified 
by taking "formal" derivative of the above expression (conjugated circuit counts 
being a "derivative" of KN in some formal sense): 

8KN = 8(A2~ + B2~) 

= NA2~-1~21 + NB22N-1022 + 2~8A + 2zNOB 

= (an  + a')2~ + (fiN + fl')2~, (2) 

where a, a', t ,  fl' are appropriate new constants, e.g., with a = A(a21)/21 and 
~' = 821. The per-cell contribution for R1 follows by dividing the above by NKN: 

C3KN (~ + ~'/N)2~ + (fl + fi'/N)2~ 
NK-----~ = A2~ + S2Nz (3) 

Finally, introducing the symbol # for the eigenvalue ratio 22/21, with 21 being 
identified as the maximum (magnitude) eigenvalue, and then dividing both the 
numerator and the denominator by A2~ we obtain 

aKN (~ + a' /N)/A + ((fl + fl ' /N)/A)# ~ 
NK~  - 1 + (B/A)kd ~ (4) 

The expansion of 
1/(1 + B/Ap N) (5) 

in a geometric series yields the final expression 

~K._._~N = (A1 + A'I/N) + (nl + S'x/N)# N + O(#2N). (6) 
NKN 

Here A1,B1 and /~ should be independent of the end group parameters, while 
A'I, B'I should be dependent on the end groups and can in general be derived 
exactly by knowing the end groups and the transfer matrix. In Fig. 5 we illustrate 
the four elements of a 2 × 2 transfer matrix, the determinant of which leads to 
the quadratic secular polynomial x 2 - 10x + 1 which has roots 21 = 5 + x / /~  
9.898979486 and 2 2 ~--- 5 - -  N / / ~  ~'~ 0.101020514, giving for/~ -~ + 0.010251443. 

The curve fitting of the expansion in terms of l /N, lz N and #N/N for N -%< 12 
gives the limit for RI of 0.156491 as compared to the "exact" value of 0.156472. In 
view that R1 takes the value of 0.869 eV the difference is 0.000020 eV. Nevertheless, 
in this paper we are interested in formulating procedure which can eventually give 
the limit to ever increasing accuracy. This, of course, is well below the accuracy of 
the model. The error here is due to truncation of the mixed power-geometric series. 
Of course, fitting to the form in Eq. (4) using an ever larger range of N should yield, 
in principle, exact asymptotic results. 
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Fig. 5. Construction of the transfer matrix for the 
repeating monomer unit 

The remaining results listed in Table 7 are based on curve fitting with high- 
degree polynomials in 1IN using the information on the first N = 16 members of 
the family. The constant terms of the power expansion represent the limiting values 

N = I  0.1565357 
N = 2  0.1564892 
N = 3  0.1564722 
N =  4 0.1564721 
N = 5  0.1564720 
N =  6 0.1564720 
N = 7  0.1564720 
N = 8  0.1564721 
N = 9  0.1564720 
N = 1 0  0.1564718 

Clearly, with N = 5 we achieved the accuracy of the fittings sufficient to get the 
limit at 0.1564720. The fitting of even higher polynomials (particularly for N = 8 
and above) already show numerical oscillations due to statistically "unfair" adjust- 
ments to numerical data to minimize the residuals. 

In summary, the results of Table 7 convincingly suggest that the limit for the 
coefficient of R1 can be obtained fitting with the polynomials of fifth degree in 1/N 
using the data on the initial N = 16 molecules. The only problem that we have to 
consider is how reliable are the numbers so derived. The polynomial fit (derived by 
Statworks Macintosh software) is identical to a stepwise multiple regression in 
which various powers of 1IN are taken as variables. Stepwise regression does not 
necessarily identify the optimal combination of descriptors. For example, if we 
decide to use the regression of 5th power but consider first the highest power and 
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then the two highest powers and so on, instead of the limiting values shown 
above for N = 1-5, we would obtain (using the abbreviation x = I/N) the 
following: 

Polynomialterms Limit(constant term) 

x 5 0.15682893 
x 5, x 4 0.15675137 
x s , x 4, x 3 0.15666556 
x 5 , x 4, x 3 , x 2 0.15656975 
x 5 , x 4, x 3 , x 2 , x 0.15647203 

Although we have reached the same limit, since the final equation is based on the 
same five variables, from the above we could not so convincingly claim that we 
have reached very good approximation for the limit! If one is to add x 6 we would 
confirm that  we have reached the limit, but only a posteriori, since the above results 
do not suggest that  we are even close to the limit. It  is only when the same limit is 
obtained by using additional powers (in whatever order) that some confidence in 
the above result would follow. 

The reason that  we have obtained very good limit truncating a power 
expansion at N = 5 is that  the power expansion effectively parallels the 
mixed power-geometric expansion which, as we have seen from the introductory 
comments on limits, is the natural expansion in this case; but in the general case 
we need not know that. Moreover,  for polymer strips of a "wider" form, larger, 
or for "higher-order" models even for the studied polymer transfer matrices 
would arise with several eigenvalues. All this makes the convergence of the 
constant terms less apparent  in the corresponding power expansion and multiple 
regressions. 

4.40rthogonal expansion 

The constant term and other coefficients in multiple regression are sensitive to 
truncation of an expansion. To avoid the "instabilities" of the coefficients, which 
can change dramatically with inclusion of a higher power or an additional descrip- 
tor, or exclusion of some descriptors even if their role was marginal, one makes the 
variables involved in the expansions mutually orthogonal. The general procedure 
for this has been outlined 1-25, 26]. The advantage of the orthogonal descriptors is 
in their interpretability. Since they remain constant as new variables are added they 
signify the contributions of already used descriptors and as such can be transfered 
or compared to similar results from other studies. 

We have applied the procedure to derive "stable" regression equations by first 
constructing the orthogonalized variables (Table 8). Our  first descriptor f21 is 1/N. 
The next descriptor 02 is the par t  of 1/N 2 which does not correlate with 1/N. By 
definition this is the residual in the regression of 1/N 2 against 1/N. Similarly, we 
obtain 03 by first finding the residual (from the regression of 1/N 3 against 1/N) and 
then following with a regression of this residual against the residual of the 
regression of 1/N 2 against 1/N, which we already labeled as g22. The process 
continues with additional descriptors which are gradually made orthogonal to 
each of the already introduced descriptor. The software Statworks allows one to 
construct orthogonal  descriptors easily as it makes possible to save and store 
residuals of various regressions as needed. 
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1~ 2~ 3~ 4~ 5~ 

1 1.0000000 0.1164032 0 . 0 0 4 4 0 0 2  0 . 0 0 0 0 7 0 8  0.0000006 
2 0 . 5 0 0 0 0 0 0  --0.1362157 --0.0267850 --0.0014014 -0.0000325 
3 0 . 3 3 3 3 3 3 3  -0.1092778 0 . 0 0 4 8 2 8 6  0 . 0 0 2 8 1 1 1  0.0001814 
4 0 . 2 5 0 0 0 0 0  --0.0750252 0 . 0 1 2 9 1 4 8  0 .0009758  --0.0001520 
5 0 . 2 0 0 0 0 0 0  --0.0477871 0 . 0 1 3 2 7 8 2  --0.0003967 -0.0001398 
6 0 . 1 6 6 6 6 6 7  --0.0268837 0 . 0 1 1 2 0 7 9  --0.0010498 -0.0000478 
7 0 . 1 4 2 8 5 7 1  -0.0105780 0 . 0 0 8 4 3 5 6  -0.0012348 0.0000299 
8 0.1250000 0.0024451 0 . 0 0 5 5 7 2 2  -0.0011488 0.0000743 
9 0.1111111 0.0129930 0 . 0 0 2 8 8 1 7  --0.0009274 0.0000918 

10 0.1000000 0.0216892 0 . 0 0 0 4 2 8 3  -0.0006384 0.0000891 
11 0.0909091 0.0290060 --0.0017998 --0.0003144 0.0000706 
12 0.0833333 0.0352461 --0.0038138 0 . 0 0 0 0 2 1 5  0.0000413 
13 0.0769231 0.0405853 -0.0056108 0 . 0 0 0 3 4 8 2  0.0000071 
14 0.0714286 0.0452414 -0.0072381 0 .0006673  -0.0000317 
15 0.0666667 0.0492592 --0.0086760 0 . 0 0 0 9 6 1 2  -0.0000696 
16 0.0625000 0.0528990 --0.0100242 0 . 0 0 1 2 5 5 7  --0.0001127 

In this way, we obtain for the polynomial of degree five with orthogonalized 
variables: 

R1 = 0.15653572 + 0.00185594f2~ - 0.00050845/22 + 0.0001963503 

+ 0.00001415f2~ + 0.0002647805. 

If one is interested in approximations using lower-degree polynomials, one can 
truncate the above polynomial, the remaining coefficients will remain the same. 

Two multiple regressions, one based on powers of 1/N variables and the other 
on the corresponding orthogonalized variables are associated with the same 
regression coefficients and the same standard errors of prediction. The difference 
is in the interpretability of the coefficients of the regression equation. From 
Table 4 (the row belonging to l/N2), for example, one would think that the 
contribution of 1IN is close to 0.002462. However, since 1IN (over the finite domain 
given by N = 16) involves a constant (although small) contribution the indepen- 
dent part of 1IN is not given by 0.002462. It is smaller and is given by the 
corresponding coefficient in the orthogonal expansion: 0.001856. 

We are, however, interested in the limiting behavior of the expansion. The 
constant term in the orthogonal expansion 0.15653572 is visibly inferior as an 
approximation to the limit than the constant term in non-orthogonal expansion 
0.15647203. How can that be? Hence, it appears that while by orthogonalization 
we get an insight into the role of the contributing factors, apparently we "lost" on 
the accuracy of our prediction. But that cannot be, because both expansions, the 
orthogonal and the non-orthogonal, are, from the point of view of chemical 
information, fully equivalent. The reason for the apparent discrepancy lies in the 
variables. While powers of 1IN can be neglected when considering the limit 
N--,  oe, they do not go to zero as N ~ oo in the case of orthogonal expansion. 
When expanding C22 in power series of 1IN the contribution is not zero but 
0.111163. Hence, the correction of the constant term of the orthogonal regression 
equation is given by the product of ( -- 0.00050844) x (0.111163) = - 0.00005652. 
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Thus, at this level (the quadratic approximation) we obtain as the limit for R1 
0.15647919, precisely the value reported in Tables 4 and 5 for non-orthogonal 
quadratic power expansion. 

Such parallelism extends to higher-degree polynomials, although because of the 
effects of rounding errors that gradually accumulate in the iterative construction of 
orthogonal descriptors some numerical differences will appear reflecting the 
effects of rounding errors on the highest decimal places. The exceptional good 
behavior of 1/N expansion when searching for the limit is due to the fact that all 
variables in the limit make no contribution so that constant term carries the 
desired information. 

The plot of data points (Fig. 6) shows that linear expansion cannot account for 
the slight "bending" of the data points. The quadratic expansion obviously does 
better job, but will nevertheless be associated with some error. 

Instead of fitting higher polynomials to the set of data points we could make 
a good estimate of the limit even by using a linear expression if we could determine 
the slope to the curve near the "end" points of the graph that approach N ~ oo, 
or 1/N ~ O. 

If we select the end point N = 16 (xl = 0.0625 and Yl = 0.15662282 and use the 
slope as determined by two close points (m = - 0.00236016), then the slope-point 
equation of a line 

y - y ,  = m(x - x~) 

for x = 0 immediately gives for the limit of the R1 contribution: 0.15647531. This is 
indeed a very good estimate. 

One can do even better by taking the limiting value for the slope as we 
gradually cut the number of points associated with small N (Table 9). In the case 
of the quadratic fit the limiting slope is m = 0.0024069321 (see the lower part of 
Table 9) which leads to the correction 0.0625 m = - 0.000150433 and the limit for 
R1 is 0.15647236, which is a significant improvement when using the estimated 
slope. 

Finally, an even better result is obtained when one seeks the limit for the 
constant term by reducing the number of data points by eliminating information 
on smaller members of the series of molecules. As we can see from Table 9, at the 
bottom of the right column, the cubic approximation (and higher) when constant 
terms are expanded in powers of 1IN gives extremely good limits. 

R I . 10 -3  

159- 

158- 

01.4 I 018 I 1 , 0  "i .2 

157" 

156 [ 
0 . 0  0 . 2  0 . 4  0 . 6  

l t N  

Fig. 6. Plot of #R1/nK against 1/N 
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Table 9. The change in the coefficient of 1IN and the con- 
stant term as the number of data points corresponding to 
smaller members of the series are eliminated from poly- 
nomial fit 

# Points Coefficients 1/N Constant 

16 0.0018559372 0.15635710 
15 0.0020935366 0.15601890 
14 0.0021875361 0.15649076 
13 0.0022372449 0.15648554 
12 0.0022682676 0.15648256 
11 0.0022896494 0.15648065 
10 0.0023053844 0.15647932 
9 0.0023175064 0.15647834 
8 0.0023271742 0.15647760 
7 0.0023350610 0.15647702 
6 0.0023416791 0.15647654 
5 0.0023473241 0.15647615 
4 0.0023521668 0.15647583 
3 0.0023564039 0.15647555 
2 0.0023601598 0.15647531 

Limits 

Linear 0.15647032 
Quadratic 0.0024069321 0.15647135 
Cubic 0.0024047024 0.15647213 
Quartic 0.0024165578 0.15647214 
Quintic 0.0024151768 0.15647215 

5 Local aromatic properties 

I t  is of interest to see how benzenoid character  of individual rings approach  the 
limiting values as the size of  a molecule increases. As molecular  size increases the 
role of the terminal rings, i.e., the boundary ,  will be less and less pronounced.  F r o m  
Table 8 in which the resonance energies of individual rings are listed we see that  
indeed the changes in the resonance contr ibutions of the individual rings decrease. 
We can differentiate two types of  Clar-sextet rings and the "central" rings which 
Clar classifies as "empty"  rings [20]. However,  even the two Clar rings are not  
equivalent. The "peripheral" rings have a higher R1 content,  which is slightly less 
p ronounced  in the "bridge" rings. The so-called "empty" rings are not  strictly 
empty (of contr ibut ions  to R1) but have much reduced local aromat ic  character  
[10, 13, 27, 28]. 

6 Recursions 

We can extend the above  considerat ions to much larger finite systems using 
expressions for ring RE  in a recursive manner.  When  the Kekul6-structure count  
follows a recursion 

K,+ I = aK,  + bK, -1  
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within a family of structurally related molecules, then the conjugated-circuit counts 
follow a related recursion: 

c~K,,+ I = 2aaK,, + (2b - -  a2)63Kn_l - 2abt3K,,_2 - -  b263Kn_3, 

where as earlier 0 is a graph-theoretical "differential" operator, e.g., the operator of 
deleting rings. 

For our families of graphs we have already seen that Kekule numbers form the 
sequence 

Family I 20; 198; 1960; 19402; ... 

Family II 40; 396; 3920; 38804; ... 

Each molecule in the second family has twice as many Kekule valence structures 
than the corresponding member in the first family. One way to find the recursion is 
to take these initial values and solve the corresponding equations for a and b. We 
can write the corresponding system of equations as 

K 4  K 3  K 2  b ' 

which (using Sarus rule) immediately gives for a and b, 

K 3 K 2  - K4K1  
a =  = 10, 

K 2 K 2  - K3K1  

K2 K4 --  K 3  K 3  
b =  = - 1 .  

K 2 K 2  --  K 3 K 1  

Hence, we obtain the recursion 

Kn = 10Kn-1 - K n - 2 .  

Here for the first family K1 = 20 and K 2 = 198 are the initial values, while twice 
those values of K1 and K 2 a r e  initial values for the second family. In fact, one can 
easily verify that we could have started the recursions by including benzene with 
Ko = 2 as the first member of the first family and then continue with K~ = 20, to 
recur to K values for the higher members of the family. 

The recursions for K can also be derived directly by examining smaller mem- 
bers of each family. We know that the recursion involves only two successive 
members, because the corresponding transfer matrix which gives possible distribu- 
tions of bonds across the repeating cell has only two rows. However, while the 
recursion expression does not depend on the end groups construction a direct 
construction of the recursion may be seemingly hindered by the presence of 
"awkward" end groups. This is illustrated for the first family when one assigns CC 
double and CC single bonds to the exposed CC bonds in the last benzene ring. One 
then obtains successively: 

KI = 2 + 2 x 9 ,  

K 2 = 9K1 + 2 x 9, 

K 3 = 9 K z + 8 K 1  + 2 x 9 ,  

K4 = 9K3 + 8K2 + 8K1 + 2x9 ,  
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The above recursion also has a simple mathematical form, but differencing success- 
ive expressions here reveals that the above can be reduced to the earlier recursion 
involving only two consecutive members of the family. 

The recursion relations for individual tings for R1 as well as all higher Rn 
conjugated circuits are given by the same recursion valid for the Kekule valence 
structures: 

X, + 1 = 10X, - X,_ 1. 

The regular increase in the coefficients allows one to generate the contributions of 
6- and 10-membered conjugated circuits in the formulas for the RE of rings for 
which initial coefficients are known. 

7 Going beyond R~ and R 2 contributions 

Although contributions from higher conjugated circuits to the molecular reson- 
ance energy decreases in larger benzenoids the number of higher conjugated 
circuits also increases. In order to estimate the role of such higher conjugated cir- 
cuits, we will now consider contributions of 14-membered conjugated circuits R3. 

The enumeration of higher conjugated circuits is not prone to simple calcu- 
lation, since contributions arise from conjugated circuits of both, different relative 
orientation and of different shape, although in any case recursions as in the second 
equation of Sect. 6 continue to hold. For molecules considered in this paper we 
were, however, able to arrive at the exact counts of R3 being able to extrapolate the 
count of conjugated circuits for new rings (not occurring in smaller molecules) from 
"old" rings of a molecule of a same size. Once the initial coefficients for the "new" 
rings are found, we can use the recursion X,+I = 1 0 X , -  X,_ 1 and derive the 
coefficients that enumerate the contributions of these "new" rings for molecules of 
even greater size. The count of the conjugated circuits R1, R2 and R3 for initial 
members of our family of structures is listed in Table 10. 

Since we obtained the count of conjugated circuits of R1 and R 2 using the 
computer we will here only outline the exact count of conjugated circuits R3. Fig. 7 
illustrates labeling of individual symmetry non-equivalent rings for one of the 
families considered. The Clar sextet rings, A, C, E, G, I, etc., are indicated as 
hexagons with an inscribed circle. These hexagons do not contribute towards R3. 
So we have to consider only tings B, D, F, H, J, L, N, etc. To find the contributions 
of the rings near the "ends" of the molecules, the rings B, D, F, one can apply the 
recursion. These rings appear in smaller members of the family and since the counts 
of conjugated circuits for smaller molecules are known, one can continue with 
recursion and generate coefficients for these rings for arbitrary large members of 
the family. 

The problem is to determine the contributions from the "inside" rings, rings 
which appear for the first time in the sequence of family members, and which 
cannot be determined from the recursion. In Fig. 8 we show that there is a one-to- 
one correspondence for the count of R3 conjugated rings of the shape of "phenan- 
threne" and the count of R2 conjugated circuits. Since the count of the latter is 
already found (using our computer program), we need only to find the count of 
14-membered conjugated circuits of the "pyrene" perimeter. The molecules that we 
consider do not have 14-membered conjugated circuits of the "anthracene" shape. 

Figure 9 shows how a count of R3 conjugated rings of a shape defined by the 
periphery of pyrene for a "deeper" ring, i.e., a ring away from the periphery, 
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Ring R1 R2 RE REPE 

A 0.450000 0.100000 3.325200 
B 0.100000 0.300000 0.642800 
C 0.400000 0.200000 0.793600 

4.761600 0.158720 

A 0.449495 0.101010 3.323680 
B 0.101010 0.303030 0.649292 
C 0.404040 0.191919 1.593292 
D 0.090909 0.181818 0.494908 
E 0.409091 0.181818 1.600908 

7.662080 0.159627 

A 0.449495 0.101020 3.500816 
B 0.101020 0.303061 0.649356 
C 0.404082 0.191837 1.593356 
D 0.090815 0.271449 0.582780 
E 0.408673 0.182653 3.200552 
F 0.091837 0.275510 0.590328 
G 0.408163 0.275510 0.844938 

10.962130 0.166093 

A 0.449490 0.202041 3.522472 
B 0.101021 0.303062 0.649364 
C 0.404082 0.191834 1.593352 
D 0.090815 0.272446 0.583760 
E 0.408670 0.182662 3.200552 
F 0.091846 0.275539 0.590388 
G 0.408205 0.183587 1.599588 
H 0.091743 0.275229 0.589724 
I 0.408257 0.183486 1.599652 

" 13.938850 0.165820 

becomes equiva len t  to the count  of R1 conjugated  circuits for the " inner"  ring, i.e., 
a ring which is one "per iodic  uni t"  close to the molecular  "end". Moreover ,  the 
count  pertains to a molecule  which is also one periodic uni t  smaller. So formally we 
can write for the coun t  of R 3 conjugated  circuits of "pyrene"  shape for the top  
molecule  of Fig. 8: 

Count of R3 in molecule M, Count of R, in molecule M,_ 1 

D,F C 
H,J G 
L,N K 
P,R O 
T,V S 
X,Z W 

and so on. 
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• ° ° 

Fig. 7. Labeling of individual benzene rings. Clar sextet rings are shown by inscribed circles 

Fig. 8. One-to-one correspondence between the count of R 2 conjugated circuits and R3 conjugated 
circuits of the "phenanthrene" shape 

I 2 N 

l Fig. 9. Equivalence of the count of 14- 
membered conjugated circuit of "pyrene" 

1 2 : '~ :"~N-I shape in a molecule with N monomer 
~ units to the count of 6-membered 

• ' " ~ L ~  conjugated circuits in a molecule of size 
N--1 

Since the coefficients for the rings to the left and of smaller molecules are 
already known, one can continue with the recursion indefinitely. Before we can 
write the final result for the count of R3 in molecule M, ,  we have to find 
contributions of 14-membered conjugated circuits of "anthracene" and "phenan- 
threne" shape. In our molecules the former do not exist, while the latter give the 
same count as the count Rz, as one can easily verify. Therefore, to obtain the 
contributions of the count of R3 in molecule Mn, we have to add to the already 
known count of R2 the count of R1 in preceding molecule and the corresponding 
lexicographically relevant "preceding" ring. 

In Table 10 we have included contributions for smaller members of the family 
that starts with tetrabenzantracene. 

8 D i s c u s s i o n  

Benzenoid polymers continue to receive considerable attention in the literature 
1-29]. One can think of at least two important  reasons for this continuing interest• 
On the one hand, computat ions on such polymers offer insights on models for 
graphite and other closely related structures, such as recently discussed bucky- 
tori 1-30, 31], and fullerene cones [32]. On the other hand, such polymers may 
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Table 11 

Structure Ring R1 R2 R3 

n = 30 A 18 4 
K =  40 B 4 12 12 

C 16 8 

n = 48 A 178 40 
K =  396 B 40 120 120 

C 160 76 
D 36 108 124 
E 162 72 

n = 66 A 1762 396 
K =  3920 B 396 1188 1188 

C 1584 752 
D 356 1068 1228 
E 1602 716 
F 360 1080 1240 
G 1600 720 

n = 84 A 17442 3920 
K =  38804 B 3920 11760 11760 

C 15680 7444 
D 3524 10572 12156 
E 15858 7088 
F 3564 10692 12276 
G 15840 7124 
H 3560 10680 12280 
I 15482 7120 

n = 102 A 172658 38804 
K =  384120 B 38804 116412 116412 

C 155216 73688 
D 34884 10465 120332 
E 156978 70164 
F 35280 105840 121520 
G 156800 70520 
H 35240 105720 121400 
I 156818 70484 
J 35244 105732 121572 
K 156816 70488 

n = 120 A 1709138 384120 
K =  3802396 B 3837280 1152360 1152360 

C 1536480 729436 
D 345316 1035948 1191164 
E 1553922 694552 
F 349236 1047708 1202924 
G 1552160 698076 
H 348840 1046520 
I 1552698 697720 
J 348880 1046640 
K 1552320 697756 
L 348876 1046628 
M 1552322 697752 

M. Randi6 et al. 
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include cases of unusual conductive properties and may become important  for 
potential applications. Graovac  et al. [33] discussed the structural conditions on 
the periodic unit that  secures zero energy gap (i.e., no energy gap at all) for the 
H M O  model with the restriction to singly connected polymers, while Klein et al. 
[34] as well as Hosoya  et al. [35] discussed it more generally. Recently, Seitz and 
Schmalz [36] examined 30 different polymers built by fusing four or fewer fused 
hexagons per monomer  unit and reported the resonance energies relative to 
graphite, as well as the resonance energies per site or resonance energies per 
electron (REPE). Such polymers of such size are all possible according to a pro- 
posed graph-theoretical classification scheme for fused polyhex polymers [-37]. 

In Table 11 we first give the numerical values for the resonance energy contri- 
butions based on the exact count of 6-membered conjugated rings and 10-mem- 
bered conjugated rings. We used the following parameters [-11]: R1 = 0.869 eV and 
R 2 = 0.246 eV. In the last two columns of Table 11 we give the contributions of R3 
which as we see makes some, even if not, dramatic change for the computed REPE. 
The numerical value for the contribution of 14-membered conjugated circuits is 
also R3 = 0.100 eV [11]. 

As we see the values that  we derived compare well with the REPE reported in 
the literature for similar benzenoid systems. For  example, Zhu et al. [-8] examined 
a fully benzenoid polyphenanthrene, i.e., benzenoid polymer having all non- 
adjacent rings can be assigned pi-sextets. This benzenoid polymer, among all re- 
ported, has the largest REPE 0.1553 eV, and is most similar to molecules studied in 
this report. 

9 Cluster expansion 

Another simple extrapolative approach with some chemical appeal is to use an 
(additive) cluster expansion [39]. In our present case we can view each monomer  
unit as an overall "site" or supersite and an oligomer as a linear chain of such 
(super) sites. We then write the resonance energy for an N-site chain as 

EN = ~o + Nel + (N - -  1 ) g  2 + . . .  + eN, 

where em is an m-site cluster term, the coefficient (N - m + 1) of e,, is the number of 
such m-site clusters in an N-site chain, and eo is an end correction. It  is straightfor- 
ward to show 

el = E1 -- eo 

e 2 = E 2 - 2 E 1  +Co 

e3 = E3 -- 2E2 + E1 

em = E, , - -  2E,,-I + E, ,-z ,  re>z3 

What  we identify as an end may appear  as a little bit ambiguous, as illustrated in 
Fig. 10, where alternative choices for the repeating unit for the same polymer are 
depicted. One thing that  can be done is first to note that the N = 1 species contain 
n = 30 atoms, while only 18 atoms are added with any increase of N by 1, so that 
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p s ~  S~S 

Fig. 10. The "ambiguity" in selecting end groups 

M. Randi6 et al. 

we might  associate 12 a toms with the end correction (as also indicated in Fig. 7) 
and simply take 

So = (12/30)E1. 

Then  from the data  in Table 1, one obtains 

N EN eN 

0 1.78656 
1 4.46640 2.67984 
2 7.18512 0.03888 
3 9.90033 0.00054 

Evidently, fairly rapid convergence here is observed. Again the interpretation here 
is tha t  So is an end energy, ~1 a m o n o m e r  energy, s2 a m o n o m e r - m o n o m e r  (or 
dimer correction) interaction, etc. Fo r  the second family of polymers in Table 
2 a similar analysis now with So = (6/24)E1 can be done to yield 

N E N ~N 

0 0.8934996 
1 3.5973998 2.7039002 
2 6 . 3 1 5 9 8 9 8  -0.0146898 
3 9 . 0 3 4 3 8 0 0  -0.0001998 
4 11.7527662 -- 0.0000004 

Again convergence is quite rapid. And we note (as has been done before) tha t  the 
addit ion of higher terms does not  change the earlier ones (much as with o r thogona l  
descriptors) - in fact, the addit ion of more  data  points EN does not  change the 
earlier descriptors SN. Finally, in terms of the asymptot ic  expansion coefficients of 
Sect. 4 one may  show SN "~ pN. 
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